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A Method for Computing Spectral Reflectance

1. Introduction. The colour of an object depends on the spectral distributions of the
incident light and the reflectance functions of the object. More precisely at each point z
the receptors (for example, the rods and cone of the eye) measure a quantity I, giver by

l(z) = /a,‘(X)l','(.t, A)S(z, \)d\ (LY

where a,(\) is the absorption function of the receptors (u = 1 to 4 it we consider the rods
and cones), E(z,)\) is the incident illumination and S(z,)) the reflectance of the surface.
In terms of the notation used by Hurlbert (1885) our function S(z,\) is the product of the
albedo p(z,)) and the reflectance function R(n, &, 3).

These quantities /,(z) are then evaluated and combined to give the perception of colour. .4
For the human eye it is assumed that the outputs of the three cones correspond to the "
perception of colour. The three cones corresponds to the three dimensions of the space of 1
perceived colours (von Helmholtz 1866, or see Feynman 1965 for an interesting review).!

A number of experiments show that perceived colour of an object is relatively independent
of the spectral distribution of the incident light . This is the colour constancy eHect
demonstrated most clearly by Land on Mondrians. Since the incident illumination and the
surface reflectance are confounded in the input (1.1) some assumptions must be made to
disentangle them and to obtain a colour which depends on the surface reflectance alone. _ tond
This paper suggests a scheme for doing this. Alternative schemes are described in Rubin 4
and Richards (1984), Hurlbert and Poggio (1985). S

This paper assumes that both the colour, the incident illumination and the surface reflectance
can be expressed as a finite sum of basis functions in spectral space.? It is then shown
that given a sufficient number of patches of different surface reflectivity with roughly the e,
§ same incident illumination it is possible to solve for the surface reflectance up to an overall
scaling tactor. In such a theory the colour of a patch would depend on the colour of
the neighbouring patches, this is consistent with Land's experiments. Rubin and Richards R
(1984) have considered ways of distinguishing such "material” patches by considering the
spectral properties of the observed intensities. They discuss "lawful processes” (such as

'The rods are not normally assumed to contribute to colour perception, however, we will arguc later
that although their inputs do not directly contribute to perceived colour they can still be used to
"normalize” colour perception. _—

3This corresponds to the standard regularization approach (Poggio and Torre, 1984) of solving an
underconstrained problem by restricting the space of solutions.
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orientation and shadowing) which change the albedo while still corresponding to the same
material and propose an "opposite sign slope condition” to detect such change.

The first part of this paper, although done independently, is similar to work of Wandell and
Maloney (1984a, 1984b)*. In their work the illuminant and spectral surface reflectances
are also expanded in terms of a finite number of basis functions in spectral space and
- neighbouring colour patches, with the same assumed illumination. Qur formula for the
number of patches required differs from theirs, however, and furthermore we demonstrate

a simple way to solve the equations. Our scheme can also be extended using results from
- Hurlbert and Poggio(1985) to cases when the spectral components of the illuminant and the
reflectance function vary with position. For this case we can find the colour of an object at
its houndaries and then fill in the interior. This method will automatically find the material
boundaries and thus will act as a material edge detector in the sense of Rubin and Richards
(1984).

2. The Basis Functions. First we consider the case when there is no spatial dependence
of the illuminant or the surface reflection. The inputs to the receptors are then

l, = / au(NEN)S(\)dA. (2.1)
We now expand F(\) and S()\) in terms of basis functions 13;(\) and C;(\)

n

EQ) =Y riBi(2), SO = Z-,,C(x) (2.2)

i=1 Jj==

For the present we will set n = m = 3 and choose the same basis functions

3

E(O) =Y b)), S(\) = 27,B(X) (2.3)

=1 J=1

This is merely for convenience and because of psychophysical evidence that perceived
colours form a three dimensional space (Helmholtz, (1866), for a review see; Feynman
1965). 1t is straightforward to generalize the analysis to different values of » and m and for
different numbers of rods and cones. Substituting (2.3) into (2.1) gives

I, =147, / a, (M) B B3;(N)d (2.4) RN

where we use the summation convention over i and ;.

We can wnte this as

’l am gratctul to Ted Adelson for bringing lheur work to my attention. ‘_:::‘-]
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by = Tt (2.5)

The (T};) depend only on the absorption coefficients and the basis functions. They are
therefore parameters of the system and hence are known (the system might be taught to
learn the optimal (7;)). The (r:) and (v,) describe the illuminant and the surface reflection
respectively. We therefore have four equations (x =: 1 to 4) for six unknowns (i = 1 to 3
, 7 =1 t0 3). Note, however, that there are effectively only five unknowns because of the
scaling ambiguity

T Pri, Y 7;’— (2.8)
This ambiguity* can be traced back to (2.1) where it corresponds to the scaling

E(X) v pE()), S(A) §-%2 (2.7

This scaling ambiguity cannot be dealt with by our theory and a further normalization
) is required. Note this is the only ambiguity in our theory and only one normalization is
\;; required. This is in contrast to the theories of Land(1983), Horn(1975) and Blake(1984)
where colour is computed independently in seperate channels each of which has to be
normalized seperately. Unlike these theories (for a review of these see Hurlbert 1985) our
method allows interactions between channels and hence we only need one normalization.

To resolve this ambiguity we can normalize the light source by making (r.~) a unit vector, or
by setting r; = 1.

A single patch gives us four equations for five unknowns. Suppose we have a neighbouring
patch with a different spectral surface reflectance. This second surface reflectance can be
expressed in terms of basis functions by

3
S0 = ¥ 6B, 9)
=1

Now it we make the reasonable assumption that the spectral distribution of the illuminant is
unchanged on the second patch we measure four new quantities

ke = 1i, T (2.9)

‘whose nature was clarified during discussions with Hurlbert and Poggio
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which involve only three new unknowns (s;). We combine this with (2.8) to get eight
equations for eight unknowns. Number counting suggests this is enough to get a unique
solution. The equations are non-linear however and, as we will show in the next section, in
some cases there may be more than one solution.

For the human eye to use a colour scheme like this with four receptors, the rods are
necessary as well as the cones. If we just use the cones and have three receptors it follows
from (2.10) that we can only have two basis functions and hence only a two dimensional
space of perceived colour. Observe that ihe output from the rods can be treated differently
from the output from the cones. It is combined with them to solve (2.4) and (2.6) and
determine the (5;) and the (v;) but it is only the inputs from the cones that gives the
colours. The rods and the cones combine to determine the perception of colour from the
spectral information at the cones.

We now consider the general case when there are p receptors, n basis functions for the
illuminant and m for the reflectance function. Suppose we have ¢ patches. Then the number
of equations is pg. The number of variables is n + mq — 1 (the 1 comes from the scaling
ambiguity). To obtain a unique solution®we need

pi>n+mg—1. (2.10)
This is a neccessary condition. To check it is sufficient we will show that the non-linear
equations can be solved.

Note from (2.10) that we always need p > m, that is the number of different photoreceptors
must be greater than the number of basis functions for the reflectance. Thus to obtain a
three dimensional colour space with this scheme at least four photoreceptors are required.)

The number of patches required is

(@2.11)

So if there are two basis vectors for the illuminant and surface reflectances (n=m=2) and
three receptor fields (p = 3) we only need one patch.

3. Solving the Equations.

We now consider the equations in more detail. They are of the form

lu = Ti"j’r:‘jaku == flS‘)T:‘) (3‘1)

*This equation has also been derived by J. Rubin {pers. comm.). It does not imply that ¢ > n, a
formula stated by Wandell and Maloney {1984a), and a counterexample is given in the next section.
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The matrices T}; are parameters of the system given by

Th = / au(N)Bi(N) B (M)A (3.2)

If the basis functions (5;()\)) do not overlap then the off-diagonal terms of Tl; are zero
(T¢; = 0,1 # j). This case is considered by Hurlbert and Poggio (1985). This simplifies the
equations (3.1) but at the cost of preventing interactions betwaen different colour channels
(although interactions can be introduced later). These interactions are important for our
purposes since they mean that only one colour normalization (the overall scaling given by
(2.7)) is needed.

The basic strategy to solve the equations (3.1) is to take lincar combinations of the matrices
T}; 1o obtain simpler equations. We illustrate this by considering the case when there are
threa photoreceptors, and two basis functions (n = m = 2, p = 3). As shown in the pravious
section only one patch is needed to solve the equations. Thece are

by= g T i = 1,25 = 1,25 = 1,2,3. (3.3)

The (T};) are three two-by-two symmetric matrices. The space of such matrices is three
dimensional and so the T;; form a basis for this space.® Hence we can find three vectors
Py (a=1,2,3) such that

1o
L 3

00 .
01
[1 o]= PuT:

Combining (3.4) with (3.3) defines three (known) numbers A,, As, A; by

3 3 3
A=Y plh=nmA=) ph=nmA=) pl=nn+tnn (35

==t w==z1 w=l

We normalize the light source by setting r, == 1. This reduces (3.5) to

T = A, 2ty = Ag, Ay -+ 13 = Ay, (3.8)

*Wae choose the (T, ) so that they are linearly independent. We are free to do this since they are the
parameters of the system.
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These can be solved to give

A F (A3 — 1A, A)V3

2 _ /2
At (M —AMA) T 4= . . (3.7)

2A,

I o= lry =

This gives two possiule solutions (the values of r, and v, are interdependent). The constraint
) that the illuminant and the reflectance function are both positive functions may not help to
‘i resolve this, the two roots of both r, and ~, all have the same sign.

Mote that only one patch is needed to solve for this case although there are two basis
functions.

The General Case

- The basic strategy to solve the equations consists of taking linear combinations of the (7(‘,)
and reducing them to some algebraic equations having only a finite number of solutions.

For four photoreceptors and three basis functions we require two patches with the same
illumination. We have two sets of equations, one from each patch,

l“ == T."]_,'T:ﬂ‘j, IC“ = T.’(,‘T:;-. (3.8)

A simple way to solve these equations is by choosing the basis vectors (B,-(X)) so that the
(77,) generate a space spanned by

1 0 0][0 0 0][0 1 O][0 0 0
0 0 olJo 1 oLJ1 o tf,jo o of (3.9)
00ollooollo1 olloon

The conditions on the basis vectors (/3,()\)) which this requires are

/ @ B, (M) By(N)d\ = 0, / a* By (N) By(\)dh = / a* By(N) By(N)dX. (3.10)

To see this observe that the space of symmetric three by three matrices is six dimensional.
The matrices defined by (3.9) define a four dimensional subspace and to ensure that the
(1%) tie in this subspace we must impose the two conditions of (3.10). To check the
exact form of (3.10) consider all possible matrices I/;; that can be generated by linear
combinations of (3.9). First observe that it is impossible to get a matrix with Il,3 £ 0, this

gives us the first equation of (3.10). The second equation comes from noting that we must
have Hyy == Hya for all /.

We now take linear combinations of (3.8) using four vectors g5, (a = 1,2,3,4) as in (3.4) and
(3.5) until we generate the basis matrices of (3.9). The equations (3.8) are now of form

-

L0 St R S i S B ST ST P P S S P A
T T T -

. o - - - - . . - )
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. Y= Ay g = »/;3,-73:_- %‘, (3.11)
== B = ’:—:,;s = % (3.12)

and
‘l Av(rdrs) + Ag(ry + 13) + Agrd == Ayramy, Bi(r3r3) + Bafrs + 12} + By1} = Byrery,. (3.13)

The (A;) and (1%) are linear combinations (using the g4)of the (1) and the (m,). We have
normalized by setting r, = 1 and divided some of the equations by r, and ;.

This gives

;‘;; (A4 — 8By)rs
y = 3.14
', i (Al - 6“1)T3 + (A:! - 633) . ( )

where § = A;/B,. We can substitute this into (3.13) to obtain a quartic equation for r3

which will have at most four solutions. Then we solve (3.14) for r; and (3.11) and (3.12) for
(;-: the ('1.') and (g;).

The basis matrices defined by (3.9) were choosen arbitrarily. The same analysis could be

applied for other basis matrices. For some choices of basis there is only one possible

solution. An example is

1 0 0J[0 1 0][0 0 1][0 0 O
0 0 oljt 0 ol[o 0 o/ jo 0 1} (3.15)
00 olfo o ollt oollo1o

This basis, however, requires that

/ a* B3{(\)d\ = 0, / a*Bi(\)d\ = 0. (3.16)

which seems an unnatural choice for the (B;). This illustrates the important point that the
choice of basis functions is crucial. By assuming that we can express our illumination
and surface reflectance in terms of a finite set of basis functions we are performing an
implicit type of regularization (Poggio and Torre, 1984) by restricting the space of possible
solutions. Only if the basis functions are choosen so that linear combinations of them are

able to represent most of the naturally occuring illuminants and surface reflectances will
methods of this type give good solutions.
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This strategy of taking linear combinations of the ('I‘:‘j) will drastically simplify the equations.
It is also possible to solve equations (3.8) directly. We write the equation as

L= (T4 m + Thyre + Thar) + v2(Thim + Thare + Thyrs) +73(T3im + Thoma + Thn),p=1,.4
(3.17)

We can use three of these four equations to solve for (v;) in terms of the (r;). This will leave o
us with two polynomial equations relating r, and r; (we have set r, == 1). Similarly we solve
similar equations for (4;) in terms of the (o) leaving another polynomial equation in r; and
3. These two equations in r, and r; can be combined to give solutions for r; and r;. Since
these equations are polynomials there will usually be more than one solution, and in some g

cases an infinite number. The previous method involving basis matrices is a lot simpler. If
it is impossible to choose a basis like (3.9) it will still be possible to simplify the equations -
by taking linear combinations of the (T%;) to reduce the matrices to simple forms. J

— >
kv- Note that so far nothing has been said about the behaviour of the solution. It is even "
conceivable, though unlikely, that the solutions are sometimes not positive everywhere. ‘

They are guaranteed to be smooth provided the basis functions are. Instead of choosing S J
three basis functions and solving for their coefticients it would be possible to have more

] basis functions and impose some a priori expectations on the solutions. Such an approach —— e
- is discussed in Richards, Yuille and Poggio (1985). S
'}:: The Spatial Extension

In this section we consider extensions to situations when the surface reflectance and the
e illumination are functions of space. Hurlbert and Poggio (1985) have shown that for many _
;::Z cases the spatial dependence of the illumination and surface reflectance can be factored --.i;'--.ij
out from the spectral dependence for colour patches. For these cases we can write Ll

S(z,\) = S(\)/(z) (4.1)

and

E(z,)) = EO(2) (4.2)

where f(z) and g(z) depend only on position.

»_ With these assumptions the spatial dependence of the illuminant and the surface reflectance, o
. when not due to material (colour) changes, is factored out and the analysis can proceed e ;.f-j.
as in the previous section. There is an important difference, however, the scaling ambiguity .':;:Z-
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(2.7) will now have a spatial dependence. In other words we will not be able to distinguish
the spatial dependences f(z) and g(z) of the surface reflectance and illumination. For
many cases the illumination will have little spatial variation (for example, if the light sources
are a long way away) and we can set g(z) = 1| and solve for f(z). Otherwise we can
consider the boundaries between two materials and assume that the spatial dependence
of the illumination is negligible across the boundary. We can then solve for the colour on
either side of the boundaries (and fill in if necessary). A third method is to note that if there
is a single light source the spatial dependence y{r) will have a definite form , typically it will
fall off as 1/7* (where r is the distance to the light source), and so f(z) can be determined.

in the previous sections we were considering a Mondrian style world consisting of flat
patches of uniform colour. Qur method would sample two patches and obtain two equations
(2.5) and (2.6). For the more general case we would sample neighbouring points. If the
two points lie on the same material the I, will be proportional to the &, and the equations
will be underdetermined. If the points occur at a material boundary, one lying in each
material, then we have enough equations to solve for the colours. Since we are considering
neighbouring points it is reasonable to assume that the illuminant is the same (including the
scaling factor) for each point.

To summarize: we sample neighbouring points in the image and compare their values I,
and k,. If these are proportional we conclude that the points have the same colour (though
not necessarily the same brightness) and hence lie on the same material. If they are not
then we are on a material boundary and can solve for the colours on either sides of the
boundary. The colour cannot change inside the boundary, or else we would detect it, and so
the colour on the boundaries determines the colour in the interior. However the brightness,
or strength, of the colour is undetermined. If the illuminant is constant in space we can
solve this by a single global normalization (such as setting r; = 1, as in (3.5)). We suggest
making this assumption even it the illuminant varies spatially, unless the variation is very
large or there is strong evidence to the contrary from other souces. Thus spatial variation
of the illuminant will be interpreted as due to changes in the rellectance function due to
orientation and other changes.

Other ways of generalizing to allow for spatial dependence would include using the standard
assumption that the spatial variation of the illuminant is smaller than the spatial variation of
the surface reflectance (Land (1983), Horn (1974), Blake (1984)). New methods tor doing
this are discussed in Hurlbert and Poggio (1985) and extensions will be discussed in a
forthcoming paper.
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